

Tevatron Experimental Issues at High Luminosities

Michal Kreps

On behalf of the CDF and DØ Collaborations

Tevatron

- $p\overline{p}$ collisions at $\sqrt{s} = 1.96 \, \text{TeV}$
- Peak luminosity \approx 3.3 · 10³² cm⁻²s⁻¹
- Almost 7 fb⁻¹ delivered

FERMILAB'S ACCELERATOR CHAIN

Heavy flavor production

Phys. Rev. D79, 092003

- At Tevatron, b production cross section much higher than at **B-factories**
- Energy much higher then b-hadron masses ⇒ All sorts of b-hadrons accessible
- Total inelastic cross section \approx 1000 times larger than *b* cross section ⇒ need to work lot at trigger level

The CDF detector

Muon chambers/scintillators, $|\eta|$ < 1.5

Silicon, 7-8 layers

Drift chamber, 96 layers, 40-138 cm

The CDF detector

The DØ detector

Silicon, 5 layers

Fiber tracker, 16 layers, \approx 50 cm

DØ Magnet polarity

Regularly flip magnet polarity

Positive and negative tracks have exactly same acceptance

Helps to reduce detector asymmetries

Detectors comparison

	CDF	DØ
Tracking	$ \eta <$ 1	$ \eta <$ 2
Mom. resolution	excellent	reasonable
Muons	$ \eta <$ 1.5	$ \eta <$ 2.0
		Better purity
Electrons	good	good
K , π PID	TOF, dE/dx	none
Neutrals	Can do something	Probably similar to CDF
B polarity	fixed	regular swap

Silicon detectors status

No significant degradation of offline(trigger) tracking for S/N > 3(6) expected

→ Ready for another couple of years data taking

CDF Trigger Architecture

Dataflow of CDF "Deadtimeless"
Trigger and DAQ

CDF B Triggers

Di-muon

 $m{
ho_T}(\mu)>$ 1.5 GeV $|\eta|<$ 1 Υ , J/ψ down to low $m{
ho_T}$

 $X(3872) \rightarrow J/\psi \pi \pi$ β_s in $B_s \rightarrow J/\psi \phi$ Ξ_b , Ω_b properties Lifetimes $B_{s,d} \rightarrow \mu \mu$ B_c mass, lifetime

Displaced track + lepton

 $IP(trk) > 120 \ \mu \text{m}$ $p_T(I) > 4 \ \text{GeV}$ $|\eta| < 1$ semileptonic B decays

High statistics lifetimes

B mixing

b-hadron production

2 displaced tracks

 $p_T(trk) > 2 \text{ GeV}$ $IP(trk) > 100 \ \mu\text{m}$ $|\eta| < 1$ Fully hadronic decays

 $B_{\rm s}$ mixing D^0 mixing $B \to hh$ Σ_b observation Λ_b studies $D^0 \to \mu\mu$ $B_{\rm s} \to e^+e^-$

Silicon @ trigger

- Run 1 collected $\mathcal{O}(1)$ of $B_s \to D_s \pi$ events in 100 pb⁻¹
- Run 2 has about 200 events per same luminosity in single
 D_s decay
- Using silicon in triggering made huge difference ⇒ B_s mixing possible

DØ Trigger

B Triggers

Di-muons:

$$p_T(\mu_1) > 3.0 \; ext{GeV} \ p_T(\mu_2) > 1.5(3.0) \; ext{GeV} \ |\eta| < 2$$

Single muon:

$$p_T(\mu) > 3.0 \text{ GeV}, |\eta| < 2$$

K, π particle ID

- Use them for dE/dx
- Calibrated on large sample of $D^{*+} \rightarrow D^0 \pi^+ \rightarrow [K\pi]\pi^+$
- \approx 1.4 σ K, π separation
- Since late 2006 as luminosity got higher we don't use 2 innermost superlayers for dE/dx
- No significant degradation seen

 D^0 selected mass region after cuts - CDF Run II prelimina K- π separation after calibration - CDF Run II preliminary

K, π particle ID

- Time resolution \approx 110 ps
- TOF and dE/dx complementary

Flavor tagging

- Both experiments use both same and opposite side tagging
- CDF benefits from PID in same side tagging for B_s
- DØ gains in larger muon acceptance and trigger strategy

Flavor tagging

DØ performance:

- OST: $\epsilon D^2 = 2.5\%$ efficiency=99.7% dilution=15.8%
- full: $\epsilon D^2 = 4.7\%$ efficiency=100% dilution=22%

CDF performance:

- OST: $\epsilon D^2 = 1.2\%$ efficiency=96% dilution=11%
- SST: $\epsilon D^2 = 3.6\%$ efficiency=50% dilution=27%

Luminosity evolution

- Plots show collected at CDF
- DØ plots look similar
- Get about 1.5-2 fb⁻¹ per year
- Projections:

FY 2010: $\approx 9 \text{ fb}^{-1}$

FY 2011: $\approx 12 \text{ fb}^{-1}$

Running at high luminosity

- Generally no large issues with higher luminosities
- We get several additional interactions per bunch crossing
 - No large issue offline, tracking is robust and precise enough
 - Main work to keep triggers alive
- → Continuous effort to improve
- Sometimes difficult task at multipurpose detector
- → Have to deal not only with b-physics triggers, but also with Higgs triggers
- As luminosity is rising, we are upgrading our trigger system to cope with it
- → Will try to convince you that we are going well

DØ Layer 0

- Install another layer of silicon detector (Layer 0) in 2006
- Mitigate tracking losses due to radiation damage of Layer 1
- Improve impact parameter resolution

XFT upgrade

- XFT performs tracking in drift chamber at L1
- Original design used only axial layers = half of the chamber
- In 2007 upgrade to include also 3 stereo layers

SVT upgrade

- Take XFT tracks and find corresponding hits in silicon detector
- After track fit obtain precise track parameters, including impact factor
- Allows to select long lived band c-hadrons
- Two steps
 - Compare actual hits to predefined patterns stored in AM
 - Fit tracks found in previous step

- → In 2006, install new AMs with more patterns
- → Currently installing GigaFitter (new generation online track fitting)

How we are doing

95% CL Limits on $\mathcal{B}(B_s \to \mu\mu)$

Conclusions

- Tevatron running better than ever before and delivering large amount of data
- Both detectors perform very well
- Experiments still active with new ideas to keep up with high luminosity
- Currently coming out of the shutdown
- Expect to start data taking at the end of next week
- We have well understood detectors taking lot of data
- → Expect lot of new results from Tevatron

